Publications

In case I haven’t updated the list recently, please find a full list of publications at Google Scholar.

2020

Ball, S.R., Pham, C.L.L., Lo, V., Morris, V.K., Kwan, A.H., and Sunde, M. (2020) Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins. Methods Mol. Biol. 2073. 10.1007/978-1-4939-9869-2_4

Göbl C.*, Morris, V.K. *, van Dam, L., Visscher M., Polderman P., Hartlmüller C., de Ruiter H., Hora,M., Birner-Gruenberger, R., Vos H., Reif, B., Madl T. and T. Dansen. (2020) Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A. Redox Biology 28, 101316 10.1016/j.redox.2019.101316

2019

Brender, J.R., Ghosh, A., Kotler, S.A., Krishnamoorthy, J., Bera, S., Morris, V.K., Sil, T.B., Garai, K., Reif, B., Bhunia, A., and A. Ramamoorthy. (2019) Probing transient non-native states in amyloid-β fiber elongation by NMR. Chem. Commun. 55(31):4483-4486 10.1039/c9cc01067j

Sun, Y., Medina-Cruz, A., Hadley, K., Galant, N., Law, R., Vernon, R., Morris, V.K., Robertson, J., and A. Chakrabartty. (2019) Physiologically important electrolytes as regulators of TDP-43 aggregation and droplet-phase behavior. Biochemistry 58(6), 590-607 10.1021/acs.biochem.8b00842

2018

Cristóvão, J.S., Morris, V.K., Cardoso, I., Leal, S.S, Martinez, J., Botelho. H.M., Göbl, C.,  David, R., Kierdorf, K., Alemi, M., Madl, T.,  Fritz, G., Reif, B., and C.M. Gomes (2018) The neuronal S100B protein is a calcium-tuned suppressor of amyloid-β aggregation. Science Advances 4(6):eaaq1702 10.1126/sciadv.aaq1702

2017

Hora, M., Sarkar, R., Morris, V.K., Xue, K., Prade, E., Simpson, E., Buchner, J., and B. Reif. (2017) MAK33 antibody light chain amyloid fibrils are similar to oligomeric precursors PLoS ONE12(7): e0181799. 10.1371/journal.pone.0181799

Hora, M., Carballo-Pacheco, M., Weber, B., Morris, V.K., Wittkopf, A., Buchner, J., Strodel, B., and Reif, B. (2017) Epigallocatechin-3-gallate preferentially induces aggregation of amyloidogenic immunoglobulin light chains. Scientific Reports 7, 41515 10.1038/srep41515

2014

Lo, V.C., Ren, Q., Pham, C.L.L., Morris, V.K., Kwan, A.H. and Sunde, M. (2014) Fungal hydrophobin proteins produce self-assembling protein films with diverse structure and chemical stability. Nanomaterials 4, 827-43 10.3390/nano4030827

Linser, R., Bardiaux B., Andreas, L. B., Hyberts, S. G., Morris, V.K., Pintacuda, G., Sunde, M., Kwan, A. H. and Wagner, G. (2014) Solid-state NMR structure determination from diagonal-compensated proton-proton restraints. J. Am. Chem. Soc. 136(31), 11002–10 10.1021/ja504603g

2013

Morris, V.K., Kwan, A.H., and M. Sunde. (2013) Analysis of the structure and conformational states of DewA gives insight into the assembly of the fungal hydrophobins. J. Mol. Biol. 452(2) 244-56 10.1016/j.jmb.2012.10.021

Yang, W., Ren, Q., Wu, Y.-N., Morris, V.K., Braet, F., Kwan, A.H., and M. Sunde. (2013) Surface functionalization of carbon nanomaterials by self-assembling hydrophobin proteins. Biopolymers 99(1) 84-94 10.1002/bip.22146

Morris, V.K., and Sunde, M. (2013) Formation of amphipathic amyloid monolayers from fungal hydrophobin proteins. Methods Mol. Biol. 996, 119-129 10.1007/978-1-62703-354-1_7

2012

Morris, V.K., Linser, R., Wilde, K.L., Duff, A.P., Sunde, M., and A.H Kwan. (2012) Solid-state NMR spectroscopy of functional amyloid from a fungal hydrophobin: a well‑ordered b‑sheet core amidst structural heterogeneity. Angew. Chem. Int. Ed. 51(50) 12621-5 10.1002/anie.201205625

Macindoe, I., Kwan, A.H., Ren, Q., Morris, V.K., Yang, W., Mackay, J.P. and M. Sunde. (2012) Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proc. Nat. Acad. Sci. USA  109(14), E804-11 10.1073/pnas.1114052109

Morris, V.K., Kwan, A.H., Mackay, J.P. and M. Sunde. (2012) Backbone and sidechain 1H, 13C and 15N chemical shift assignments of the hydrophobin DewA from Aspergillus nidulans. Biomol. NMR Assign. 6(1):83-6 10.1007/s12104-011-9330-5

2011

Morris, V.K., Ren, Q. Macindoe, I., Kwan, A.H., Byrne N., and M. Sunde (2011) Recruitment of class I hydrophobins to the air:water interface initiates a multi-step process of functional amyloid formation. J. Biol. Chem. 286, 15955-15963 10.1074/jbc.M110.214197

2008

Kwan, A.H., Macindoe, I., Vukasin, P.V., Morris, V.K., Kass, I., Gupte, R., Mark, A.E., Templeton, M.D., Mackay, J.P. and M. Sunde (2008) The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. J. Mol. Biol. 382, 708-20 10.1016/j.jmb.2008.07.034